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Summary: Rainfall forecasting is important for many catchment management applications. Due to the complex nature of rainfall
orocesses, however, it is not feasible to forecast rainfall based on a physical approach. With the advent of the digital computer and

subsequent developmen: of artificial intelligence approaches, data driven techniques such as the artificial neural networks

{ANN},

have emerged as an altemative (o forecast rainfall time series. Presented herein are the resuits of a study investigating the application
of ANN to forecast the spatial distribution of rainfall for an urban catchment. Three alternative types of ANN, namely multi-layer
feedforward neural networks, partial recurrent neural networks and time delay neural networks were identified, developed and, as
presented in this paper, tound to provide reasonable predictions of the rainfall depth one time-step in advance. The data requirements
for and the accuracy obtainable from these three alternative types of ANN are discussed.

1. INTRODUCTION

A challenging task for catchmen: management and flood
management in particular is the provision of a quantitative
rainfall forecast. Accurate forecasts of the spatial and temporal
distribution of rainfall are useful for both water quantity and
quality management. For example, a flash flood warning
system may require a gquantitative rainfall forecast to eshance
flood prediction with an aim to increasing the lead time.
Simitarly, a rainfail forecast provides advance mformation for
many water quality problems.

There are two possible approaches to rainfall forecasting. The

first approach involves the study of the rainfall processes in

order to model the underlying physical laws. However, this

physical approach may not be feasible because

» rainfall is a complex dynamic system which varies both in
space and time,

¢ even if the rainfall processes can be described concisely
and completely, the volume of calculations involved may
be prohibitive: and

s the data that is availabie 1o assist in definition of control
variables for the models, such as rainfall intensity, wind
speed, and evaporation, etc. are limited in both the spatial
and temporal dimensions.

A second approach to forecasting rainfall is to apply a
transtormation to the input data for production of the desired
cutput data  This transformation can be considered as a
mapping between the inputs and outputs without a detailed
consideration  of the internal structure of the physical
processes This approach is essentially data driven. Since ali
important information is embedded in the data, an appropriate
modet therefore s developed 1o extract these essenial
teatures. This approach is considered appropriate for the
present study because the main concern is 1o forecast short-
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duration rainfall at specific locations within a catchment. A
thorough understanding of the physical laws usually is not
required, and the data requirements are not as extensive as for
a process model.

Artificial neural networks { ANN), which emulate the parafiel
distributed processing of the human nerve system, have proven
to be very powerful in dealing with complicated problems,
such as, function approximation, pattern recognition and time
serigs prediction. ANN, therefore, were adopted in the present
study to simulate the complex mapping of the rainfall time
series.

There have been a number of reported studies that have used
ANN to solve problems in hydrology. For example, French et.
al. [1992] used an ANN to forecast rainfall for a catchment
with artificial rainfall inputs, while Hsu et. al. [1995] applied
an ANN te model the rainfall-nunoff process. However, in
many of the previous studies, only the most common type of
ANN was used, namely, the multi-layer feedforward network
(MLFN). Although the MLFN has proven to be a very
powerful tool and amounts to 80% of practical applications in
all felds of engineering and science, several afternative types
of ANN have been developed recently for modelling temporal
sequences. The specific alternatives appropriate for rainfali
forecasting itnclude the partial recurrent npeural networks
(PRNN) and time-delay neural networks (TDNN).

Presented in this paper are the results of an investigation of the
alternative  ANN {ie. MLFN, PRNN and TDNN} for
forecasting rainfail over an urban catchment in western
Sydney, The ANN were used to forecast rainfall at mulii-
locations simultaneously for the next |3 minutes based on past
spatial and temporal rainfall patterns. The important issues of
identifying the order of lag and complexity of the networks are
discussed also



1. THE ARTIFICIAL NEURAL NETWORKS
APPROACH

2.1 The Basics

An ANN is a computational approach inspired by studies of
the brain and nerve systems in biological organisms. The
powerful functions of a biological neural system is attributed
to its parallel distributed processing by individual cells, known
as neurons. In view of this, an ANN is constructed to emulate
the structure of the biological neural system by distributing
computations to small and simple processing units, called
artificial neurcns, or nodes. An ANN consists of layers of
nodes connected together. A simple 3-layer ANN, as shown in
Figure 1. is used to illustrate the basic structure and
terminology of an ANN.

output layer

hidden layer

tput. layer

Figure | - A simple 3-layer feedforward neural network

There are basically three types of layers. The first layer
connecting to the input variables is called input layer. The last
fayer connecting to the output variables is called output layer.
Lavers in between the input and output layers are called
hidden layers, there can be more than one hidden layers.
information is transmitted through the connections between
nodes. In a simple situation, information is passed forward
only, as shown in Figure [ This type of network is called a
feedforward network, or mulii-layer feedforward network
(MLEFN}

It was shown by Hormik et. al. [1989] that given enough
hidden nodes. a MLFN can approximate any continuous
function to any desired degree of accuracy. Mathematicatly, a
three-layer MLFN with o input nodes, h hidden nodes, and
one output node, can be expressed in the following formula:

i
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Where v is the output,

0, 1s the cutput value of the | hidden node:

0, = S X W, T W) 2)

11
¥; are the inputs,
w; are the connection weights between nodes of the
hidden and output layer,
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wy, are the connegtion weights between nodes of the
hidden and the input layer

%,~1.0 is a bias and w, and w,; are the weights for
the biases, {the biases are used to preveni the error
surface from passing through the origin at all times.)
s; and s are activation functions. The most
commonly used activation function is a logistic
sigmoid function:

SN} = s (3

lrg )
From equation (1}, it can be seen that a MLFN is a generai-
purpose, noalinear model. The main parameters of this model
are the connections weights.

The estimation of parameters is known as training where
optimal connection weights are determined by minimising an
objective function. The sum of squared error (S5E) between
the nelwork outputs and the desired outputs is & popular
objective function, and was adopted in this study.

2.2 ANHY for Rainfall Forecasting

The aim of the present study is to forecast rainfall for the next
time-step. The rainfall cutput vector X{t+1} is assumed to be
related 1o previous ramfall vectors, X(t}, ..., X{t-k+1} using a
general nonfinear model struciure:

(1) = g(X(1, X(t-1), X(6-2), . X(t-k=1)) + () (4)

Where the dimension of the vector X represents the rainfali in
space, g( ) is an unknown nonlinear mapping function, eft} is
an unknown mapping error (to be minimised), and k is the
{unknown} number of past inputs contributing to rainfall at the
next time~step. Sometimes, k is refers to the lag of the model,
[f k=1, the future rainfall is related only to the present raintall,
thus giving a lag-1 model.

According to equation (4), the development of an ANN for
rainfall  forecasting involves the following important
considerations:

# Select an appropriate ANN to represent the recursive
dynamic rainfall system.

o Estimate the order of lag for the ANN, ie. to determine
the number of past rainfall values to be included in the
inputs

e Determine the optimal complexity of the ANN
appropriate to the problem, ie. to determine the number
of hidden fayers, and number of nodes in & hidden layer.

2.3 Alternative Metworks

Three alternative types of ANN are identified appropriate for
rainfall forecasting and adopted in this study for comparison.
They are:

e Multi-layer Feedforward Network (MLFN}

»  Partial Recurrent Neural Network (PRNN)



s Time Delay Neural Network (TDNN)

A MLFN is used because this type of network is good at
pattern recognition and function approximation. The theory of
the MLFN is well understood. There are many successful
applications in various flelds of engineering and science.

When a MLFN is used to mode! rainfall time series, a correct
order of lag for the MLFN needs to be determined. The
determination of the order of {ag may involve a lengthy
process of trial and comparison. To overcome this problem, a
partial recurrent network (PRNN) is identified. The main
feature of a PRNN is the inclusion of a set of feedback
connections which allow information passing backward. The
recurrence created by the feedback connections fets the PRNN
retrain information of the previcus time steps. The temporal
structure of the rainfall series is internally represented by the
feedback connections. As such, the order of lag is not required
to be specified explicitly,

A rainfall time serles usually contains local featwres, such as
isolated peaks between prolonged low values of rainfall. These
local features do oot have a fixed position in time, rendering
the prediction of their occurrence extremely difficult. In view
of this, a Time Delay Neural Network {TDNN} is adopted.
The TDNN was originally developed by Waibel [1989] for
phoneme recognition. The main feature of a TDNN is the
recagnition of local features within a larger pattern,
independent of the positions of the local features. The TDNN
is essentially a feedforward network, but the connections
between layers are modified. Essentially, the outputs of a layer
are buffered several ime sieps and then connected to the next
layer. This method enables local short duration features be
formed at the lower layer and more complex longer duration
features at the higher layer.

Following is & more detailed description of each type of
network. They are iliustrated in the context of rainfalf
torecasting,

A, MLEN

Presented in Figure 2 is & generic structure of a MLFN
designed for rainfall forecasting.
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Figure 2 - A MLIN tor Rainfail Forecasting

The cutput nodes of the network are rainfall of the next time
step, which contain | elements, representing the spatial
locations of rainfall. For example, if one waats to forecast
rainfall at 16 points in space, j is equal to 16. The number of
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hidden nodes (h), which defines the complexity of the
network, is a key variable to be estimated. Note that the
number of hidden layer can be more than one. The input layer
contains k batch of input nodes. The k is referred 1o as the lag
of the network and is another key variable to be determined.

B. PRMM

The most popular PRNN cailed Elman network [1990] is
adopted in this study. This network was originaily developed
for learning temporal language structure. It was subsequently
found very useful in modeliing time series. Figure 3 shows the
structure of an Eiman network for rainfall forecasting.
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Figure 3 - An Elman Network for Rainfall Forecasting

The basic structure of the Elman network is feedforward.
However, one special set of context units are inciuded to
receive feedback signals. The function of the context units is
to store information of previous fime steps. To achieve this
aim, the context units make a copy of the activation of hidden
nodes in the previous time step. Thus, at fime t the context
units have some signals of the state of network at time t-}. As
a result, the whole network at a particular time depends on an
aggregate of previous states as well as on the current input.

As shown in Figure 3, the input nodes contain j elements,
representing the spatial dimensions of the rainfall. The number
of hidden nodes is h, which is the same as the number of
context units. The only vanable to be specified is h.

One major advantage of the Elman network is that the
temporal structure of rainfall is implicitly represented by the
context unifs. The user does not need to pre-define the order
of lag for the network.

. TDNM

Presented in Figure 4 is a basic structure of a TDNN for
rainfall forecasting. The main function of the TDNN is to
detect fectures and their temporal relationship independent of
their positions in time. For this purpose, each layers are
structured into time frames. Two or more time frames in a
lower level layer {¢.g. input layer} are connected to a single
time frame of the higher level layer {e.g. hidden layer). Thus,
the higher level layer is able to abstract features at lower
levels.



As an illusiration, the TDNN shown in Figure 4 contains four
time frames at input and three time frames at hidden layer. The
time frames are combined to form a “window” 1o represent a
duration in: time.
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Figure 4 - A TDNN with 3 moving windows at inputs

There are totally three moving windows at the input,
corresponding time delay of 1. 2 and 3 (as shown in dotted
lines). Each node in the hidden layer is connected to a window
of 2 time-frame of input nodes. The output is obtaired by
integrating {summing) the information over 3 iime-frame
windows in the hidden layer,

In this TDNN, the hidden nodes are able to detect local
features within the range of the three delays. A shift in position
of the fearures at the input can be detected by the hidden
nodes and the output nodes.

The main variables of 2 TDNN need to be defined are: (1)
numbers of time frames in input and hidden layers; (2) window
size (the time delay); and (3} the number of hidden nodes.

3 APPLICATION TO A CATCHMENT

31 The Study Caichment

The Upper Parramatta River Catchment, shown in Figure 3, is
lacated in the western suburbs of Sydney, Australia. Total area
of the catchment is approximately 12 km® Within the upper
catchment area, the dominant land use is typical of urban
environments with a mix of residential, commercial, industrial
and open space (parkland) areas.

Considerable development has occurred with the catchment
over the past two decades which has resulted m an increase in
the frequency of recorded flood levels. To mitigate the social
and economic losses associated with flood events in thig
catchment, the Upper Parramatta River Catchment Trust
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(UPRCT) was instituted in 1989 with the role of managing
flood mitigation measures within the catchment area.
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Figure 5 - The Upper Parramatta River Catchment

There are sixteen {16} continuous rain gauges within the
Upper Parramatta River Catchment Areas; locations of these
gauges are shown in Figure 5. The majority of these gauges
have been installed by the UPRCT since its formation
Consequently, long-term records are not available form these
gauges.

Records of the 16 rain gauges were obtained from January 91
to September 96. During this period, 34 storm events were
extracted. The criterion for extraction was that the daily
rainfall total was greater than 20 mm. The data series were in
15-minute interval giving a total number of rainfall values of
1749,

Three types of ANN were used to forecast the Ruture rainfall
for the 16 gauges simultaneously.

32 Methodslogy

A critical issue in developing an ANN is generalisation. If an
ANN properly learns the essential features of the data, the
ANN 1s then said to achieve good generalisation. An ANN
may, however, suffer from either under-fitting or over-fitting
the training data. An ANN that is not sufficiently complex can
fait to detect fully the features in a complcated data set,
teading to under-fitting. An ANN that is too complex may ft
the noise, not just the features, leading to over-fitting.

A popular technique to achieve generalisation is the early
stopping method presented by Sarle [1995]. According to the
early stopping method, the data was split into three sets,
namely a training set, a validation set and a test set. The
training set was used to train the network whereas the
validation set was used to monitor, or test the performance of
the network at regular stages during traiming. Traiming stopped
when the error on the validate set reached a minimum. Finally,
the performance of the network was evatuated on the test data
set which had not involved i the training process.



Where appropriate, the networks in this study used a signmoid
activation function in the hidden nodes, but a linear function in
the output nodes, The use of a signmoid function was to
enable non-lineanty of the network., However, the signmoid
function was not adopted in the output nodes because it would
force the output to be bounded between 0.0 and 1.0 This
required scaling of the output variable by a known maximum
value. This was undesirable for ramfali forecasting because it
might not be possible to set a priori reasonable maximum
rainfall vailue. To overcome this situation, an identity (linear)
function was used.

To achieve better performance and faster convergence in
training, the data were transformed with the log function.

= * or e
=05 * log jo{x+1} (5)

where x is the input.
The normalised mean squared error {NMSE), defined as

follows was chosen as the performance indicator.

Z:Z(dﬂp_-vop ]

1

NALSE = Y Y Sy, y
:’:Z{du,u"d(,’?) ()PO' a 4 ‘4
{6)
where O is the number of cutput nodes

P is the number of paiterns

d,y is the target output

Yop 15 the network’s output

o is the varance of the farget outputs

In essence, the NMSE is the sum of squared errors (S8E)
normalised by the number of testing patterns over all output
nodes and the estimated variance of the data. The use of
NMSE enables a comparison of results with different length of
testing patterns. Noted also that a value of NMSE = 1|
corresponds to simply predicting the average.

4. TEST RESULTS AND DISCUSSIONS

The zarly stopping technigue was adopted. Accordingly, the
34 rainfall events were divided into three parts: 16 events (748
numbers of 15-minute rainfall values) were used for training, 8
events (376 rainfall values) for validation and 10 events {625
rainfall values) were hold out for testing.

The maximum epoch (cycle} for training' was sef at 10GG.
During training, the networks were validated ai every 100
epoch. Training was stopped when the validation error
reached its lowest value, or the training reached the maximum
epoch. Finally, the networks were evaluated against the testing
data. whicl had not involved in the training process.

Various network configurations were attempted in order to
determine the effect of two key variables: (1} order of lag, and
{2y number of hidden nodes. For the MLFN, the orders of lag
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tried were 1, 2, 3 and 4. The numbers of hidden nodes tried
were 2, 4, 8, 16, 24, 32, 64, and 128. Networks with two-
layer of hidden nodes were also attempted. For each order of
lag, the network with minimum NMSE was selected and
shown in Table 1.

For the Elman network, the order of lag was fixed at 1
because the network would Jearn the temporal structure
implicitly. The numbers of context units tried were 2, 4, 8, 16,
24, 32 and 64. The network with minimum NMSE was
selected and shown in Tabie 1.

For the TDNN, networks with 2. 3 and 4 input windows were
tested. The resuits of the three TDNN were shown in Tabie 1.

Table 1 - Comparison of the Three Tyvpe of Networks

Training
Train Validate Test Stopping, {1 Erroral
Network (NMSE) | (WMSE)Y | (NMSE) epoch 1000 epoch
{NMSF}
MLFN Lag ! N .
(16.24-16) .50 0.68 0.64 260 049
ap Y
?_g‘;ﬁ é;‘g oSt 069 066 100 0.47
MLFN Lag 3
(48-4-16) 048 .69 0.67 TR 0.47
MILFN Lag 4 _ _ i
64.2-16) .52 0.71 0.63 200 049
Elman
(16-4-16) (.49 0.67 064 300 0.48
TINNN Lag 2 - . .
3216-16) 050 0.67 0.63 100 044
TDONN Lag 3 _ .
(48-32-16) 0.50 .60 0.64 100 0.4
TONN Lag 4 . e
(64-32-16) .51 0,69 263 100 0.40

Note: (1) The network configuration is denoted by three figures (x-v-
z), where x=no. of input nodes. v = no. of hidden nodes and
# = no. of output nodes
{2y The sigmoid activation function was used at both hidden
and output nodes of the TDNNs. [t was found that if a
lingar outpul activation function was used in the output
nodes of a TDONN, large NMSE wouid result.

The following points were observed from the test results.

e Al three types of networks had comparable
performance.

e«  Networks with higher order of lag tended to over-
learn the training data, resulting in smaller training
errors, but larger test errors.

e Networks with lower order of lag required more
hidden nodes, and vice visa.

&  The MLFN with lower order of lag had slightly better
performance than that of higher order of lag.

» The Elman network had comparable performance
with the lag-1 MLFN and outperformed the MLFNs
with higher order of fag.

e A lag-2 TDNN had the best performance. However,
it was noted that the TDNNs required sigmoid
activation function at the output nodes. Otherwise,
very large NMSE would result.

Shown in Figure 6 are some of the better test results provided
by the three types of networks.
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Figure & - (a) Forecasting Rainfall at Gauge No. 3 for the
storm Event on 2 Jan 96; (b) Forecasting Rainfall at Gauge
No. 3 for the Storm Event on 6 Jan 96

In general, the three alternative types of networks provided
reasonable predictions of the rainfall for the next time step.
However, all the networks had difficulty in forecasting the
peak values of rainfall, Improvement would he expected if
more data were avaifable for training the networks,

The networks with lower order of lag showed a better
performance indicated that the rainfall series might not have a
long time-dependence structure. Also, given the same number
of hidden nodes, a network with higher lag contained more
parameters, thus having a higher chance to over-learn the
training data Consequently, the networks with higher order of
lag had smaller training error but larger testing error,

It seemed that there existed an optimal network complexity to
cope with the complexity of the data. It was cbserved that the
number of hidden nodes decreased as the order of lag
mgreased. and vice versa. This fact might suggest that an
optimal complexity of network needed to be maintained in
order to achieve the best performance.
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5. CONCLUSIONS AND RECOMMENDATIONS

The following conclusions were derived:

e Three alternative types of ANNs were set up for the
Upper Parramatta River Catchment to forecast the spatial
distribution of rainfall for the next 15 minutes. The
procedure can be easily applied o other catchments.

# For each type of network, there existed an opiimal
complexity, which was determined by both the number of
hidden node and the order of fag.

& The MLFN had comparable performance with more
advanced networks,

s The TDNN and Elman network had good potential to
model the dynamic structure of the ramnfall process.

In summary, networks with simple structure, such as the
Elman network, the lag-1 MLFN, and the TDNN with 2 input
windows yielded better performance. The networks with
higher order of lag and more hidden nodes tended to over-
learn the training data. This was shown by the fact that they
had small training errors but high testing errors, It was
considered that more training data would be required to
improve the performance of networks.
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